

Asymptotic normality and optimality in nonsmooth stochastic optimization

Liwei Jiang

Purdue University, Industrial Engineering

Joint work with Damek Davis and Dmitriy Drusvyatskiy

CLT: For i.i.d. random variables $X_1, X_2, ...$ with mean μ and variance σ^2 ,

$$\sqrt{k}(\bar{X}_k - \mu) \xrightarrow{w} \mathcal{N}(0, \sigma^2).$$

CLT: For i.i.d. random variables X_1, X_2, \ldots with mean μ and variance σ^2 ,

$$\sqrt{k}(\bar{X}_k - \mu) \xrightarrow{w} \mathcal{N}(0, \sigma^2).$$

Problem: Find x^* minimizing

$$F(x) = \underset{z \sim \mathcal{P}}{\mathbb{E}} [f(x, z)],$$

where $f(\cdot, z)$ are C^2 -smooth and strongly convex.

CLT: For i.i.d. random variables X_1, X_2, \ldots with mean μ and variance σ^2 ,

$$\sqrt{k}(\bar{X}_k - \mu) \xrightarrow{w} \mathcal{N}(0, \sigma^2).$$

Problem: Find x^* minimizing

$$F(x) = \underset{z \sim \mathcal{P}}{\mathbb{E}} [f(x, z)],$$

where $f(\cdot, z)$ are C^2 -smooth and strongly convex.

Algorithms:

CLT: For i.i.d. random variables X_1, X_2, \ldots with mean μ and variance σ^2 ,

$$\sqrt{k}(\bar{X}_k - \mu) \xrightarrow{w} \mathcal{N}(0, \sigma^2).$$

Problem: Find x^* minimizing

$$F(x) = \underset{z \sim \mathcal{P}}{\mathbb{E}} [f(x, z)],$$

where $f(\cdot, z)$ are C^2 -smooth and strongly convex.

Algorithms:

• Sample average approximation (SAA):

$$x_k = \underset{x}{\operatorname{argmin}} \frac{1}{k} \sum_{i=1}^k f(x, z_i).$$

CLT: For i.i.d. random variables X_1, X_2, \ldots with mean μ and variance σ^2 ,

$$\sqrt{k}(\bar{X}_k - \mu) \xrightarrow{w} \mathcal{N}(0, \sigma^2).$$

Problem: Find x^* minimizing

$$F(x) = \underset{z \sim \mathcal{P}}{\mathbb{E}} [f(x, z)],$$

where $f(\cdot, z)$ are C^2 -smooth and strongly convex.

Algorithms:

• Sample average approximation (SAA):

$$x_k = \underset{x}{\operatorname{argmin}} \frac{1}{k} \sum_{i=1}^k f(x, z_i).$$

• Stochastic gradient descent (SGD):

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k, z_k)$$

Theorem(Ruppert '88)(Polyak–Juditsky '92)

If $\alpha_k = \alpha_0 k^{-\beta}$ for $\beta \in (\frac{1}{2}, 1)$, then under standard noise conditions,

$$\sqrt{k}(\bar{x}_k - x^*) \xrightarrow{w} \mathcal{N}(0, \Sigma), \quad \text{where } \bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

¹(Huber '67)

²(Chen et al 20'), (Zhu et al '23), (Roy-Balasubramanian '23) ³(Hájek '70), (Le Cam '71), (Duchi-Ruan '18)

Theorem(Ruppert '88)(Polyak–Juditsky '92)

If $\alpha_k = \alpha_0 k^{-\beta}$ for $\beta \in (\frac{1}{2}, 1)$, then under standard noise conditions,

$$\sqrt{k}(\bar{x}_k - x^*) \xrightarrow{w} \mathcal{N}(0, \Sigma), \quad \text{where } \bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

and
$$\Sigma = \nabla^2 F(x^*)^{-1} \cdot \text{Cov}(\nabla f(x^*, z)) \cdot \nabla^2 F(x^*)^{-1}$$

¹(Huber '67)

²(Chen et al 20'), (Zhu et al '23), (Roy-Balasubramanian '23) ³(Hájek '70), (Le Cam '71), (Duchi-Ruan '18)

Theorem(Ruppert '88)(Polyak–Juditsky '92)

If $\alpha_k = \alpha_0 k^{-\beta}$ for $\beta \in (\frac{1}{2}, 1)$, then under standard noise conditions,

$$\sqrt{k}(\bar{x}_k - x^*) \xrightarrow{w} \mathcal{N}(0, \Sigma), \quad \text{where } \bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

and
$$\Sigma = \nabla^2 F(x^*)^{-1} \cdot \text{Cov}(\nabla f(x^*, z)) \cdot \nabla^2 F(x^*)^{-1}$$

• Similar results for SAA are known.¹

¹(Huber '67)

²(Chen et al 20'), (Zhu et al '23), (Roy-Balasubramanian '23)

³(Hájek '70), (Le Cam '71), (Duchi-Ruan '18)

Theorem(Ruppert '88)(Polyak–Juditsky '92)

If $\alpha_k = \alpha_0 k^{-\beta}$ for $\beta \in (\frac{1}{2}, 1)$, then under standard noise conditions,

$$\sqrt{k}(\bar{x}_k - x^*) \xrightarrow{w} \mathcal{N}(0, \Sigma), \quad \text{where } \bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

and
$$\Sigma = \nabla^2 F(x^*)^{-1} \cdot \text{Cov}(\nabla f(x^*, z)) \cdot \nabla^2 F(x^*)^{-1}$$

- Similar results for SAA are known.¹
- Can estimate Σ online and construct confidence intervals for x^* .

¹(Huber '67)

²(Chen et al 20'), (Zhu et al '23), (Roy-Balasubramanian '23) ³(Hájek '70), (Le Cam '71), (Duchi-Ruan '18)

Theorem(Ruppert '88)(Polyak–Juditsky '92)

If $\alpha_k = \alpha_0 k^{-\beta}$ for $\beta \in (\frac{1}{2}, 1)$, then under standard noise conditions,

$$\sqrt{k}(\bar{x}_k - x^*) \xrightarrow{w} \mathcal{N}(0, \Sigma), \quad \text{where } \bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

and
$$\Sigma = \nabla^2 F(x^*)^{-1} \cdot \text{Cov}(\nabla f(x^*, z)) \cdot \nabla^2 F(x^*)^{-1}$$

- Similar results for SAA are known.¹
- Can estimate Σ online and construct confidence intervals for x^* .
- Moreover, the covariance matrix Σ is "asymptotically optimal".³

¹(Huber '67)

²(Chen et al 20'), (Zhu et al '23), (Roy-Balasubramanian '23)

³(Hájek '70), (Le Cam '71), (Duchi-Ruan '18)

Constrained optimization:

$$\min_{x} \ F(x) = \underset{z \in \mathcal{P}}{\mathbb{E}}[f(x,z)] \qquad \text{Subject to: } x \in \mathcal{X},$$

where $f(\cdot, z)$, F are C^2 -smooth.

⁴(Dupacová-Wets '88), (Shapiro '89), (King-Rockafellar '93) ⁵(Duchi-Ruan '18)

Constrained optimization:

$$\min_{x} \ F(x) = \mathop{\mathbb{E}}_{z \in \mathcal{P}}[f(x, z)] \quad \text{Subject to: } x \in \mathcal{X},$$

where $f(\cdot, z)$, F are C^2 -smooth.

Prior work:

SAA has asymptotic normality and it is "optimal".⁴

⁴(Dupacová-Wets '88), (Shapiro '89), (King-Rockafellar '93) ⁵(Duchi-Ruan '18)

Constrained optimization:

$$\min_{x} \ F(x) = \mathop{\mathbb{E}}_{z \in \mathcal{P}}[f(x, z)] \qquad \text{Subject to: } x \in \mathcal{X},$$

where $f(\cdot, z)$, F are C^2 -smooth.

Prior work:

- SAA has asymptotic normality and it is "optimal".⁴
- No known practical online first-order method is "optimal".

⁴(Dupacová-Wets '88), (Shapiro '89), (King-Rockafellar '93)

⁵(Duchi-Ruan '18)

Constrained optimization:

$$\min_{x} \ F(x) = \mathop{\mathbb{E}}_{z \in \mathcal{P}}[f(x, z)] \quad \text{Subject to: } x \in \mathcal{X},$$

where $f(\cdot, z)$, F are C^2 -smooth.

Prior work:

- SAA has asymptotic normality and it is "optimal".⁴
- No known practical online first-order method is "optimal".
 - Dual averaging was shown to be suboptimal.⁵

⁴(Dupacová-Wets '88), (Shapiro '89), (King-Rockafellar '93)

⁵(Duchi-Ruan '18)

Constrained optimization:

$$\min_{x} \ F(x) = \mathop{\mathbb{E}}_{z \in \mathcal{P}}[f(x, z)] \quad \text{Subject to: } x \in \mathcal{X},$$

where $f(\cdot, z)$, F are C^2 -smooth.

Prior work:

- SAA has asymptotic normality and it is "optimal".⁴
- No known practical online first-order method is "optimal".
 - Dual averaging was shown to be suboptimal.⁵
- "Projected SGD" conjectured not asymptotically normal/optimal.⁵

⁴(Dupacová-Wets '88), (Shapiro '89), (King-Rockafellar '93)

⁵(Duchi-Ruan '18)

Constrained optimization:

$$\min_{x} \ F(x) = \underset{z \in \mathcal{P}}{\mathbb{E}}[f(x,z)] \quad \text{Subject to: } x \in \mathcal{X},$$

where $f(\cdot, z)$, F are C^2 -smooth.

Prior work:

- SAA has asymptotic normality and it is "optimal".⁴
- No known practical online first-order method is "optimal".
 - Dual averaging was shown to be suboptimal.⁵
- "Projected SGD" conjectured not asymptotically normal/optimal.⁵

Question:

Is there a gap between offline and first-order online algorithms for constrained optimization?

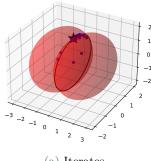
 ⁴⁽Dupacová-Wets '88), (Shapiro '89), (King-Rockafellar '93)
5(Duchi-Ruan '18)

Example: Consider solving

$$\min_{x \in \mathbb{R}^3} \underset{z \sim N(-e_3, I)}{\mathbb{E}} \langle z, x \rangle = -x_3$$
 subject to: $x \in B_2(e_1) \cap B_2(-e_1)$

Example: Consider solving

$$\min_{x \in \mathbb{R}^3} \underset{z \sim N(-e_3, I)}{\mathbb{E}} \langle z, x \rangle = -x_3$$
 subject to: $x \in B_2(e_1) \cap B_2(-e_1)$

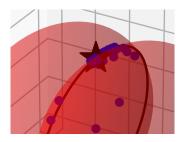


(a) Iterates

(b) Constraint set

Stochastic projected gradient descent:

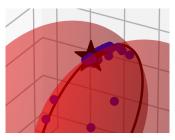
$$x_{k+1} = \operatorname{Proj}_{\mathcal{X}}(x_k - \alpha_k \nabla f(x_k, z_k)).$$



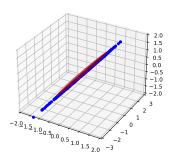
(a) Iterates

Stochastic projected gradient descent:

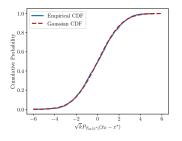
$$x_{k+1} = \operatorname{Proj}_{\mathcal{X}}(x_k - \alpha_k \nabla f(x_k, z_k)).$$



(a) Iterates



(b)
$$\sqrt{k}(\bar{x}_k - x^*)$$



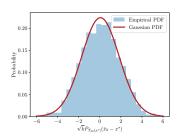
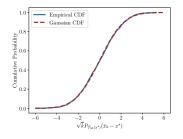


Figure: Empirical vs Gaussian



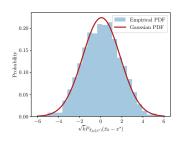
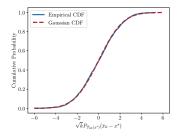


Figure: Empirical vs Gaussian

Observations:

• $\sqrt{k}(\bar{x}_k - x^*)$ converges in distribution to a Gaussian.



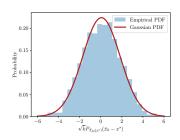
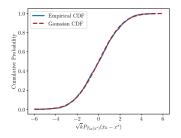


Figure: Empirical vs Gaussian

Observations:

- $\sqrt{k}(\bar{x}_k x^*)$ converges in distribution to a Gaussian.
- The covariance matrix is singular.



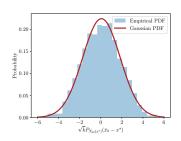


Figure: Empirical vs Gaussian

Observations:

- $\sqrt{k}(\bar{x}_k x^*)$ converges in distribution to a Gaussian.
- The covariance matrix is singular.
- The range of the Gaussian is tangent to the circle.

Problem:

$$\min_{x} \ F(x) = \mathop{\mathbb{E}}_{z \in \mathcal{P}}[f(x,z)] \qquad \text{Subject to: } g_i(x) \leq 0,$$

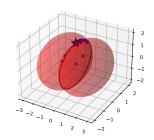
where $\{g_i\}_{i\in[m]}$ are smooth. x^* is the solution.

Problem:

$$\min_{x} F(x) = \underset{z \in \mathcal{P}}{\mathbb{E}} [f(x, z)] \quad \text{Subject to: } g_i(x) \leq 0,$$

where $\{g_i\}_{i\in[m]}$ are smooth. x^* is the solution. Define

$$\mathcal{I} = \{i \colon g_i(x^*) = 0\}$$
$$\mathcal{M} = \{x \colon g_i(x) = 0, \forall i \in \mathcal{I}\}$$



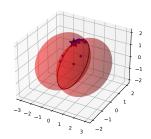
Problem:

$$\min_{x} F(x) = \underset{z \in \mathcal{P}}{\mathbb{E}} [f(x, z)] \quad \text{Subject to: } g_i(x) \leq 0,$$

where $\{g_i\}_{i\in[m]}$ are smooth. x^* is the solution. Define

$$\mathcal{I} = \{i \colon g_i(x^*) = 0\}$$
$$\mathcal{M} = \{x \colon g_i(x) = 0, \forall i \in \mathcal{I}\}$$

Standard assumptions:



Problem:

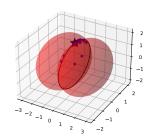
$$\min_{x} F(x) = \underset{z \in \mathcal{P}}{\mathbb{E}} [f(x, z)] \quad \text{Subject to: } g_i(x) \le 0,$$

where $\{g_i\}_{i\in[m]}$ are smooth. x^* is the solution. Define

$$\mathcal{I} = \{i \colon g_i(x^*) = 0\}$$
$$\mathcal{M} = \{x \colon g_i(x) = 0, \forall i \in \mathcal{I}\}$$

Standard assumptions:

• $\{\nabla g_i(x^*)\}_{i\in\mathcal{I}}$ are linearly independent



(LICQ)

Problem:

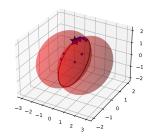
$$\min_{x} F(x) = \underset{z \in \mathcal{P}}{\mathbb{E}} [f(x, z)] \quad \text{Subject to: } g_i(x) \leq 0,$$

where $\{g_i\}_{i\in[m]}$ are smooth. x^* is the solution. Define

$$\mathcal{I} = \{i \colon g_i(x^*) = 0\}$$
$$\mathcal{M} = \{x \colon g_i(x) = 0, \forall i \in \mathcal{I}\}$$

Standard assumptions:

- $\{\nabla g_i(x^*)\}_{i\in\mathcal{I}}$ are linearly independent
- $\lambda_i^{\star} > 0 \text{ for } i \in \mathcal{I}$



(LICQ)

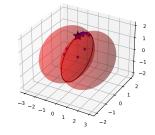
(strict complementarity)

Problem:

$$\min_{x} F(x) = \underset{z \in \mathcal{P}}{\mathbb{E}} [f(x, z)] \quad \text{Subject to: } g_i(x) \leq 0,$$

where $\{g_i\}_{i\in[m]}$ are smooth. x^* is the solution. Define

$$\mathcal{I} = \{i \colon g_i(x^*) = 0\}$$
$$\mathcal{M} = \{x \colon g_i(x) = 0, \forall i \in \mathcal{I}\}$$



Standard assumptions:

• $\{\nabla g_i(x^*)\}_{i\in\mathcal{I}}$ are linearly independent

(LICQ)

• $\lambda_i^{\star} > 0 \text{ for } i \in \mathcal{I}$

(strict complementarity)

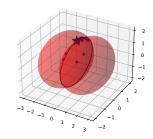
•
$$u^{\top} \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) u > 0$$
 for all nonzero $u \in T_{\mathcal{M}}(x^*)$. (SSOC)

Problem:

$$\min_{x} F(x) = \underset{z \in \mathcal{P}}{\mathbb{E}} [f(x, z)] \quad \text{Subject to: } g_i(x) \leq 0,$$

where $\{g_i\}_{i\in[m]}$ are smooth. x^* is the solution. Define

$$\mathcal{I} = \{i \colon g_i(x^*) = 0\}$$
$$\mathcal{M} = \{x \colon g_i(x) = 0, \forall i \in \mathcal{I}\}$$



Standard assumptions:

• $\{\nabla g_i(x^*)\}_{i\in\mathcal{I}}$ are linearly independent

(LICQ)

• $\lambda_i^{\star} > 0$ for $i \in \mathcal{I}$

- (strict complementarity)
- $u^{\top} \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) u > 0$ for all nonzero $u \in T_{\mathcal{M}}(x^*)$. (SSOC)

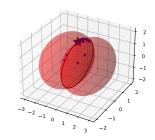
Consequences:

Problem:

$$\min_{x} F(x) = \underset{z \in \mathcal{P}}{\mathbb{E}} [f(x, z)] \quad \text{Subject to: } g_i(x) \leq 0,$$

where $\{g_i\}_{i\in[m]}$ are smooth. x^* is the solution. Define

$$\mathcal{I} = \{i \colon g_i(x^*) = 0\}$$
$$\mathcal{M} = \{x \colon g_i(x) = 0, \forall i \in \mathcal{I}\}$$



Standard assumptions:

• $\{\nabla g_i(x^*)\}_{i\in\mathcal{I}}$ are linearly independent

(LICQ)

• $\lambda_i^{\star} > 0 \text{ for } i \in \mathcal{I}$

(strict complementarity)

• $u^{\top} \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) u > 0$ for all nonzero $u \in T_{\mathcal{M}}(x^*)$. (SSOC)

Consequences:

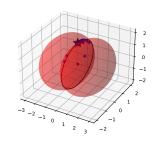
• Locally near x^* , \mathcal{M} is a smooth manifold.

Problem:

$$\min_{x} F(x) = \underset{z \in \mathcal{P}}{\mathbb{E}} [f(x, z)] \quad \text{Subject to: } g_i(x) \leq 0,$$

where $\{g_i\}_{i\in[m]}$ are smooth. x^* is the solution. Define

$$\mathcal{I} = \{i \colon g_i(x^*) = 0\}$$
$$\mathcal{M} = \{x \colon g_i(x) = 0, \forall i \in \mathcal{I}\}$$



Standard assumptions:

• $\{\nabla g_i(x^*)\}_{i\in\mathcal{I}}$ are linearly independent

(LICQ)

• $\lambda_i^{\star} > 0 \text{ for } i \in \mathcal{I}$

- (strict complementarity)
- $u^{\top} \nabla^2_{xx} \mathcal{L}(x^*, \lambda^*) u > 0$ for all nonzero $u \in T_{\mathcal{M}}(x^*)$. (SSOC)

Consequences:

- Locally near x^* , \mathcal{M} is a smooth manifold.
- for $x \in \mathcal{X}$ near x^* , $F(x) F(P_{\mathcal{M}}(x)) \gtrsim \operatorname{dist}(x, \mathcal{M})$ (linear growth)

Main idea of our approach

Projected SGD:

$$x_{k+1} = \operatorname{Proj}_{\mathcal{X}}(x_k - \alpha_k \nabla f(x_k, z_k)).$$

Main idea of our approach

Projected SGD:

$$x_{k+1} = \operatorname{Proj}_{\mathcal{X}}(x_k - \alpha_k \nabla f(x_k, z_k)).$$

Challenge:

 $\operatorname{Proj}_{\mathcal X}$ is nondifferentiable and nonlinear.

Projected SGD:

$$x_{k+1} = \operatorname{Proj}_{\mathcal{X}}(x_k - \alpha_k \nabla f(x_k, z_k)).$$

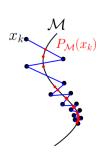
Challenge:

 $\operatorname{Proj}_{\mathcal{X}}$ is nondifferentiable and nonlinear.

Our approach:

Instead of tracking $\{x_k\}$, we consider the

shadow sequence:
$$y_k = P_{\mathcal{M}}(x_k)$$
.



Projected SGD:

$$x_{k+1} = \operatorname{Proj}_{\mathcal{X}}(x_k - \alpha_k \nabla f(x_k, z_k)).$$

Challenge:

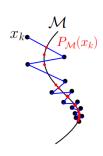
 $\operatorname{Proj}_{\mathcal{X}}$ is nondifferentiable and nonlinear.

Our approach:

Instead of tracking $\{x_k\}$, we consider the

shadow sequence:
$$y_k = P_{\mathcal{M}}(x_k)$$
.

Key steps:



Projected SGD:

$$x_{k+1} = \operatorname{Proj}_{\mathcal{X}}(x_k - \alpha_k \nabla f(x_k, z_k)).$$

Challenge:

 $\operatorname{Proj}_{\mathcal{X}}$ is nondifferentiable and nonlinear.

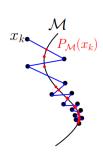
Our approach:

Instead of tracking $\{x_k\}$, we consider the

shadow sequence:
$$y_k = P_{\mathcal{M}}(x_k)$$
.

Key steps:

• Sharp growth implies x_k reaches \mathcal{M} quickly.



Projected SGD:

$$x_{k+1} = \operatorname{Proj}_{\mathcal{X}}(x_k - \alpha_k \nabla f(x_k, z_k)).$$

Challenge:

 $\operatorname{Proj}_{\mathcal{X}}$ is nondifferentiable and nonlinear.

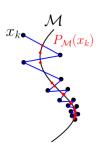
Our approach:

Instead of tracking $\{x_k\}$, we consider the

shadow sequence:
$$y_k = P_{\mathcal{M}}(x_k)$$
.

Key steps:

- Sharp growth implies x_k reaches \mathcal{M} quickly.
 - $\implies \sqrt{k}(\bar{x}_k x^*)$ and $\sqrt{k}(\bar{y}_k x^*)$ have same asymp. dist.



Projected SGD:

$$x_{k+1} = \operatorname{Proj}_{\mathcal{X}}(x_k - \alpha_k \nabla f(x_k, z_k)).$$

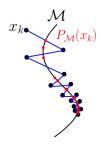
Challenge:

 $\operatorname{Proj}_{\mathcal{X}}$ is nondifferentiable and nonlinear.

Our approach:

Instead of tracking $\{x_k\}$, we consider the

shadow sequence:
$$y_k = P_{\mathcal{M}}(x_k)$$
.



Key steps:

- Sharp growth implies x_k reaches \mathcal{M} quickly.
 - $\implies \sqrt{k}(\bar{x}_k x^*)$ and $\sqrt{k}(\bar{y}_k x^*)$ have same asymp. dist.
- The shadow sequence follows the dynamics:

$$y_{k+1} = y_k - \alpha_k \underbrace{\nabla_{\mathcal{M}} f(y_k, z_k)}_{\text{smooth dynamics}} + \underbrace{O(\alpha_k^2)}_{\text{error}}.$$

Projected SGD:

$$x_{k+1} = \operatorname{Proj}_{\mathcal{X}}(x_k - \alpha_k \nabla f(x_k, z_k)).$$

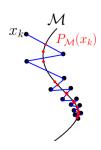
Challenge:

 $\operatorname{Proj}_{\mathcal{X}}$ is nondifferentiable and nonlinear.

Our approach:

Instead of tracking $\{x_k\}$, we consider the

shadow sequence:
$$y_k = P_{\mathcal{M}}(x_k)$$
.



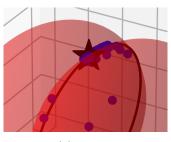
Key steps:

- Sharp growth implies x_k reaches \mathcal{M} quickly.
 - $\implies \sqrt{k}(\bar{x}_k x^*)$ and $\sqrt{k}(\bar{y}_k x^*)$ have same asymp. dist.
- The shadow sequence follows the dynamics:

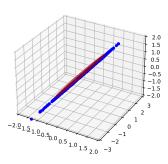
$$y_{k+1} = y_k - \alpha_k \underbrace{\nabla_{\mathcal{M}} f(y_k, z_k)}_{\text{smooth dynamics}} + \underbrace{O(\alpha_k^2)}_{\text{error}}.$$

"Approximate Riemannian SGD"

Illustration



(a) Iterates



(b) $\sqrt{k}(\bar{x}_k - x^*)$

Theorem(Davis-Drusvyatskiy-J '23)

$$\sqrt{k}(\bar{x}_k - x^*) \xrightarrow{w} \mathcal{N}(0, \mathbf{H}^{\dagger} \cdot \text{Cov}(\nabla f(x^*, z)) \cdot \mathbf{H}^{\dagger}), \text{ where } \bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

⁶(Duchi-Ruan '18)

Theorem(Davis-Drusvyatskiy-J '23)

$$\sqrt{k}(\bar{x}_k - x^*) \xrightarrow{w} \mathcal{N}(0, \mathbf{H}^{\dagger} \cdot \text{Cov}(\nabla f(x^*, z)) \cdot \mathbf{H}^{\dagger}), \text{ where } \bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

and
$$\mathbf{H} = P_{T_{\mathcal{M}}(x^{\star})} \nabla^2_{xx} \mathcal{L}(x^{\star}, y^{\star}) P_{T_{\mathcal{M}}(x^{\star})}$$

⁶(Duchi-Ruan '18)

Theorem(Davis-Drusvyatskiy-J '23)

If $\alpha_k = \alpha_0 k^{-\beta}$ for $\beta \in (\frac{1}{2}, 1)$ and $x_k \to x^*$, under standard noise conditions,

$$\sqrt{k}(\bar{x}_k - x^*) \xrightarrow{w} \mathcal{N}(0, \mathbf{H}^{\dagger} \cdot \text{Cov}(\nabla f(x^*, z)) \cdot \mathbf{H}^{\dagger}), \text{ where } \bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

and
$$\mathbf{H} = P_{T_{\mathcal{M}}(x^{\star})} \nabla^{2}_{xx} \mathcal{L}(x^{\star}, y^{\star}) P_{T_{\mathcal{M}}(x^{\star})}$$

• H is the "Riemannian Hessian".

⁶(Duchi-Ruan '18)

Theorem(Davis-Drusvyatskiy-J '23)

$$\sqrt{k}(\bar{x}_k - x^*) \xrightarrow{w} \mathcal{N}(0, \mathbf{H}^{\dagger} \cdot \text{Cov}(\nabla f(x^*, z)) \cdot \mathbf{H}^{\dagger}), \text{ where } \bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

and
$$\mathbf{H} = P_{T_{\mathcal{M}}(x^{\star})} \nabla^2_{xx} \mathcal{L}(x^{\star}, y^{\star}) P_{T_{\mathcal{M}}(x^{\star})}$$

- *H* is the "Riemannian Hessian".
- Covariance known to be "optimal".

⁶(Duchi-Ruan '18)

Theorem(Davis-Drusvyatskiy-J '23)

$$\sqrt{k}(\bar{x}_k - x^*) \xrightarrow{w} \mathcal{N}(0, \mathbf{H}^{\dagger} \cdot \text{Cov}(\nabla f(x^*, z)) \cdot \mathbf{H}^{\dagger}), \text{ where } \bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

and
$$\mathbf{H} = P_{T_{\mathcal{M}}(x^{\star})} \nabla^2_{xx} \mathcal{L}(x^{\star}, y^{\star}) P_{T_{\mathcal{M}}(x^{\star})}$$

- *H* is the "Riemannian Hessian".
- Covariance known to be "optimal".
- Same result holds for Riemannian SGD.

⁶(Duchi-Ruan '18)

Theorem(Davis-Drusvyatskiy-J '23)

$$\sqrt{k}(\bar{x}_k - x^*) \xrightarrow{w} \mathcal{N}(0, \mathbf{H}^{\dagger} \cdot \text{Cov}(\nabla f(x^*, z)) \cdot \mathbf{H}^{\dagger}), \text{ where } \bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

and
$$\mathbf{H} = P_{T_{\mathcal{M}}(x^{\star})} \nabla^2_{xx} \mathcal{L}(x^{\star}, y^{\star}) P_{T_{\mathcal{M}}(x^{\star})}$$

- *H* is the "Riemannian Hessian".
- Covariance known to be "optimal".
- Same result holds for Riemannian SGD.
 - Surprising: Unlike Riemannian SGD, we do not know \mathcal{M} .

⁶(Duchi-Ruan '18)

Theorem(Davis-Drusvyatskiy-J '23)

$$\sqrt{k}(\bar{x}_k - x^*) \xrightarrow{w} \mathcal{N}(0, \mathbf{H}^{\dagger} \cdot \text{Cov}(\nabla f(x^*, z)) \cdot \mathbf{H}^{\dagger}), \text{ where } \bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_i$$

and
$$\mathbf{H} = P_{T_{\mathcal{M}}(x^{\star})} \nabla^{2}_{xx} \mathcal{L}(x^{\star}, y^{\star}) P_{T_{\mathcal{M}}(x^{\star})}$$

- *H* is the "Riemannian Hessian".
- Covariance known to be "optimal".
- Same result holds for Riemannian SGD.
 - Surprising: Unlike Riemannian SGD, we do not know \mathcal{M} .
- Results extend to the stochastic subgradient method and stochastic proximal gradient method

⁶(Duchi-Ruan '18)

⁷(Davis-Drusvyatskiy-J '22)

 Closed the gap between offline and first-order online algorithms for stochastic nonlinear programming.

⁷(Davis-Drusvyatskiy-J '22)

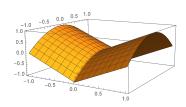
- Closed the gap between offline and first-order online algorithms for stochastic nonlinear programming.
 - Results adapt to nonsmooth stochastic approximation.

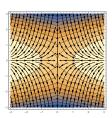
⁷(Davis-Drusvyatskiy-J '22)

- Closed the gap between offline and first-order online algorithms for stochastic nonlinear programming.
 - Results adapt to nonsmooth stochastic approximation.
- Key idea: shadow sequence ≡ approximate Riemmanian gradient sequence.

⁷(Davis-Drusvyatskiy-J '22)

- Closed the gap between offline and first-order online algorithms for stochastic nonlinear programming.
 - Results adapt to nonsmooth stochastic approximation.
- Key idea: shadow sequence ≡ approximate Riemmanian gradient sequence.
 - Our related work used shadow sequence shows that SGD escapes saddle points of nonsmooth/constrained problems⁷





⁷(Davis-Drusvyatskiy-J '22)

More examples

Unconstrained examples:

• The objective itself can be nonsmooth:

$$\min_{x} F(x) = \underset{z \in \mathcal{P}}{\mathbb{E}} [f(x, z)] + \lambda ||x||_{1}.$$

• Generic semi-algebraic functions

More examples

Unconstrained examples:

• The objective itself can be nonsmooth:

$$\min_{x} F(x) = \mathbb{E}_{z \in \mathcal{P}} [f(x, z)] + \lambda ||x||_{1}.$$

• Generic semi-algebraic functions

Stochastic variational inequalities:

We consider the task of finding a solution x^* of the inclusion

$$0 \in \underset{z \in \mathcal{P}}{\mathbb{E}} [A(x, z)] + N_{\mathcal{X}}(x),$$

where $A(\cdot, z)$ is a smooth map for almost every $z \sim \mathcal{P}$.

More examples

Unconstrained examples:

• The objective itself can be nonsmooth:

$$\min_{x} F(x) = \mathbb{E}_{z \in \mathcal{P}}[f(x, z)] + \lambda ||x||_{1}.$$

• Generic semi-algebraic functions

Stochastic variational inequalities:

We consider the task of finding a solution x^* of the inclusion

$$0 \in \underset{z \in \mathcal{P}}{\mathbb{E}} [A(x, z)] + N_{\mathcal{X}}(x),$$

where $A(\cdot, z)$ is a smooth map for almost every $z \sim \mathcal{P}$.

Stochastic equilibrium problem:

Nash equilibria $x^* = (x_1^*, \dots, x_m^*)$ of stochastic games are solutions of the system

$$x_j^{\star} \in \underset{x_j \in \mathcal{X}_j}{\operatorname{argmin}} \underset{z \in \mathcal{P}}{\mathbb{E}} [f_j(x, z)], \quad \text{for all } j = 1, \dots, m.$$

If we let A(x, z) be a map that $[A(x, z)]_j = \nabla_{x_j} f_j(x, z)$, and $\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \ldots \times \mathcal{X}_m$, the problem becomes stochastic variational inequalities.